Verifying & Validating Design

Role of Design IV&V

A well structured design is of utmost criticality when designing a system meant to orbit around the planet. Other than the obvious case of costly
repairs, a single inconsistency of software design can render a satellite or other invaluable mission centerpiece another piece of space debris. At
The NASA Independent Verification and Validation Facility, engineers and scientists work to ensure that the possibility of mission failure is mitigated
by independently analyzing the software design as it is being developed. So how does IV&V verify and validate design? Here’s how.

Verify and Validate Design

L6 Designassessment L& DetailedDesign | L& ArchitecturalDesign L& Architecture | L& Software " . .
% evaluateTransfor mat@onCorrectnessr%— — — — —| & +transformToDetailDesign:DetailedD @ +transformToArchitecture: Architecty | ¥ hardwarg:Hardware ¢ components:Component +— — — — o I n SOftwa re deSIgn’ SOftwa re req uireme nts are
:::::EZEZE:::Fgmzi:gzgggzﬁfcte%eg-: - :L‘; | | & softwardg:Software et — «?requiremen;s:Requirement f d . h . d d . I d
“\evalu_a}teFeatures:FeatureEvalgI,J:Eior,é_ R, 1 ‘ A F A [ " A = : tra nstorme Into an arc IteCtu re an d etal e
e i | e %Reqj”ifew: . design for each software component. The design
[gassemoment | Lo FestureEvalustion el = | also includes databases and system interfaces
& Intent:Featurelntent ‘ i = <"/requirements:Requiremen$-7— — — > - HSEr | h d f
‘ : » L& Database L¢ Design A ] A | (e.g., ar Wa re, Ope ratO r/U Se r, SO twa I"e
; ﬁr ’ _; o datsbesespasbaze | — >l : A/ - ~ : components, and subsystems). Design V&V
, i”:tf —— | Goprsor | . addresses software architectural design and
L& InterfaceAssessment +ensureTransformationCorrect: 'otoj(: : i . . .
— _ S e n il ! T T | emmemeel — | software detailed design. The objective of
SevaluateDEflgnDetanlzNullableSufﬂae QhasUndesiredFeaturgs:Boolean' g I s ) | | . . . .
; T e h oo ekt — — — >l domominabagtin| | | T ] . Design IV&V is to ensure that the design is a
Y I S S R P .
o | | : | e 7' _ _ _! correct, accurate, and complete transformation
: | & ! : . .
 sopeflaqlablescope | o ,J7 “ — o desgnspesi | of the software requirements that will meet the
& purview:NullablePurview ©Fr — — — — — — — — — |— R T S e — == S R ¢ interfaces:Interface | | . ] ]
7 | Vs oy | | W ’ | | operational need under nominal and off-nominal
Ld Sylstem L& OperatorInterface | L& Feature L& OperationalNeed Lo MisILion | L& Condition L& OperatorType k= — — — con d it i ONns an d t h at no un i nte N d ed feat ures are
&"subSyst&ms:System  operatorType:OpergtorType o’?needs:Neéd . ”»
& interfaces:Interface T & conditions:ConditiorrT-)’ ' | | nt ro d uce d Ve

F ‘ Y T S T 7 o] ‘ R

Figure 1: Design Elements Domain Model - IVV 09-1 IV&V
Technical Framework, Revision N

A Static View

As mentioned in the quote above, there are many different “parts” of a design that must be examined. Figure 1 illustrates the relationships
between these key parts of the design that will be verified and validated. This static view of the design and its contributories is useful in
understanding the purpose of each piece of the design, and is essential in checking key qualities such as consistency.

Getting Dynamic

Below is an activity diagram that delineates the process of verifying and validating the design. This is a similar text-to-diagram transformation
of the process mentioned above from the “Technical Framework” document. But where the above diagram was a static representation of this
text, Figure 2 is a dynamic view. Often when verifying and validating design, these two different aspects both must be analyzed to ensure
correctness, accuracy, completeness and consistency. This dynamic form is quite useful in ensuring that the design behaves as planned (i.e.
“will meet the operational need under nominal and off-nominal conditions and that no unintended features are introduced...”) Notice that
two of the actions of Figure 2 are expanded on in two separate posters to further detail the verification and validation of design process.
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Figure 2: Process of Verifying and Validating Design
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